Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Curr Opin Biotechnol ; 87: 103111, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520821

RESUMO

In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.

2.
Rheumatology (Oxford) ; 63(2): 551-562, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341646

RESUMO

OBJECTIVES: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS: Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS: SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS: LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.


Assuntos
Nefrite Lúpica , Neutrófilos , Animais , Humanos , Camundongos , Leucócitos Mononucleares , Nefrite Lúpica/patologia , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo , Receptor 7 Toll-Like/genética
3.
Lab Invest ; 104(3): 100303, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103870

RESUMO

Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linfócitos T CD8-Positivos , Prognóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Leucócitos Mononucleares/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismo , Biomarcadores/metabolismo , Linfócitos do Interstício Tumoral , Antígeno B7-H1/metabolismo
4.
Gut ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050079

RESUMO

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

5.
J Neural Eng ; 20(5)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666246

RESUMO

Objective.Invasive brain-computer interfaces (BCIs) have shown promise in restoring motor function to those paralyzed by neurological injuries. These systems also have the ability to restore sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can alleviate this problem, residual artifacts generally persist and must be suppressed by back-end methods.Approach.We have developed a technique based on pre-whitening and null projection (PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.Main results.In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation artifacts, our method suppressed artifacts by 78%-80% and 85%, respectively, as measured by a reduction in interference index. When compared to independent component analysis, which is considered the state-of-the-art technique for artifact suppression, our method achieved superior results, while being significantly easier to implement.Significance.PWNP can potentially act as an efficient method of artifact suppression to enable simultaneous stimulation and recording in bi-directional BCIs to biomimetically restore motor function.


Assuntos
Artefatos , Terapia por Estimulação Elétrica , Humanos , Eletrocorticografia , Eletroencefalografia , Amplificadores Eletrônicos
6.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586766

RESUMO

BACKGROUND: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS: We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Microesferas , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Deleção Cromossômica
7.
Front Immunol ; 14: 1150985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342338

RESUMO

Introduction: Immune checkpoint blockade (ICB) is a systemic therapeutic option for advanced hepatocellular carcinoma (HCC). However, low patient response rates necessitate the development of robust predictive biomarkers that identify individuals who will benefit from ICB. A 4-gene inflammatory signature, comprising CD8, PD-L1, LAG-3, and STAT1, was recently shown to be associated with a better overall response to ICB in various cancer types. Here, we examined whether tissue protein expression of CD8, PD-L1, LAG-3, and STAT1 predicts response to ICB in HCC. Methods: HCC samples from 191 Asian patients, comprising resection specimens from 124 patients (ICB-naïve) and pre-treatment specimens from 67 advanced HCC patients treated with ICB (ICB-treated), were analyzed for CD8, PD-L1, LAG-3, and STAT1 tissue expression using multiplex immunohistochemistry followed by statistical and survival analyses. Results: Immunohistochemical and survival analyses of ICB-naïve samples showed that high LAG-3 expression was associated with shorter median progression-free survival (mPFS) and overall survival (mOS). Analysis of ICB-treated samples revealed that high proportions of LAG-3+ and LAG-3+CD8+ cells pre-treatment were most closely associated with longer mPFS and mOS. Using a log-likelihood model, adding the total LAG-3+ cell proportion to the total CD8+ cell proportion significantly increased the predictive values for mPFS and mOS, compared with the total CD8+ cell proportion alone. Moreover, levels of CD8 and STAT1, but not PD-L1, were significantly correlated with better responses to ICB. After analyzing viral-related and non-viral HCC samples separately, only the LAG3+CD8+ cell proportion was significantly associated with responses to ICB regardless of viral status. Conclusion: Immunohistochemical scoring of pre-treatment levels of LAG-3 and CD8 in the tumor microenvironment may help predict ICB benefits in HCC patients. Furthermore, immunohistochemistry-based techniques offer the advantage of being readily translatable in the clinical setting.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Microambiente Tumoral , Linfócitos T CD8-Positivos , Imunoterapia/métodos
8.
Adv Healthc Mater ; 12(14): e2202457, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060240

RESUMO

In vitro tumor models have played vital roles in enhancing the understanding of the cellular and molecular composition of tumors, as well as their biochemical and biophysical characteristics. Advances in technology have enabled the evolution of tumor models from two-dimensional cell cultures to three-dimensional printed tumor models with increased levels of complexity and diverse output parameters. With the increase in complexity, the new generation of models is able to replicate the architecture and heterogeneity of the tumor microenvironment more realistically than their predecessors. In recent years, artificial intelligence (AI) has been used extensively in healthcare and research, and AI-based tools have also been applied to the precise development of tumor models. The incorporation of AI facilitates the use of high-throughput systems for real-time monitoring of tumorigenesis and biophysical tumor properties, raising the possibility of using AI alongside tumor modeling for personalized medicine. Here, the integration of AI tools within tumor modeling is reviewed, including microfluidic devices and cancer-on-chip models.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Microambiente Tumoral , Biofísica , Técnicas de Cultura de Células
9.
Commun Biol ; 6(1): 461, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106027

RESUMO

Angiosarcomas are rare malignant tumors of the endothelium, arising commonly from the head and neck region (AS-HN) and recently associated with ultraviolet (UV) exposure and human herpesvirus-7 infection. We examined 81 cases of angiosarcomas, including 47 cases of AS-HN, integrating information from whole genome sequencing, gene expression profiling and spatial transcriptomics (10X Visium). In the AS-HN cohort, we observed recurrent somatic mutations in CSMD3 (18%), LRP1B (18%), MUC16 (18%), POT1 (16%) and TP53 (16%). UV-positive AS-HN harbored significantly higher tumor mutation burden than UV-negative cases (p = 0.0294). NanoString profiling identified three clusters with distinct tumor inflammation signature scores (p < 0.001). Spatial transcriptomics revealed topological profiles of the tumor microenvironment, identifying dominant but tumor-excluded inflammatory signals in immune-hot cases and immune foci even in otherwise immune-cold cases. In conclusion, spatial transcriptomics reveal the tumor immune landscape of angiosarcoma, and in combination with multi-omic information, may improve implementation of treatment strategies.


Assuntos
Hemangiossarcoma , Humanos , Hemangiossarcoma/genética , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Transcriptoma , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
10.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095322

RESUMO

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Neoplasias Renais/metabolismo , NF-kappa B/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
11.
Mod Pathol ; 36(4): 100056, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788078

RESUMO

Mutations in the PI3K pathway, particularly PIK3CA, were reported to be intimately associated with triple-negative breast cancer (TNBC) progression and the development of treatment resistance. We profiled PIK3CA and other genes on 166 early-stage TNBC tumors from Singapore for comparison to publicly available TNBC cohorts. These tumors were profiled transcriptionally using a NanoString panel of immune genes and multiplex immunohistochemistry, then manually scored for PD-L1-positivity using 2 clinically relevant clones, SP142 and 22C3. We discovered a higher rate of PIK3CA mutations in our TNBC cohort than in non-Asian cohorts, along with TP53, BRCA1, PTPN11, and MAP3K1 alterations. PIK3CA mutations did not affect overall or recurrence-free survival, and when compared with PIK3CAWT tumors, there were no differences in immune infiltration. Using 2 clinically approved antibodies, PIK3CAmut tumors were associated with PD-L1 negativity. Analysis of comutation frequencies further revealed that PIK3CA mutations tended to be accompanied by MAP kinase pathway mutation. The mechanism and impact of PIK3CA alterations on the TNBC tumor immune microenvironment and PD-L1 positivity warrant further study.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Antígeno B7-H1/genética , Singapura , Fosfatidilinositol 3-Quinases/genética , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Microambiente Tumoral
13.
Front Neurosci ; 16: 1021097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312030

RESUMO

Cortical stimulation via electrocorticography (ECoG) may be an effective method for inducing artificial sensation in bi-directional brain-computer interfaces (BD-BCIs). However, strong electrical artifacts caused by electrostimulation may significantly degrade or obscure neural information. A detailed understanding of stimulation artifact propagation through relevant tissues may improve existing artifact suppression techniques or inspire the development of novel artifact mitigation strategies. Our work thus seeks to comprehensively characterize and model the propagation of artifacts in subdural ECoG stimulation. To this end, we collected and analyzed data from eloquent cortex mapping procedures of four subjects with epilepsy who were implanted with subdural ECoG electrodes. From this data, we observed that artifacts exhibited phase-locking and ratcheting characteristics in the time domain across all subjects. In the frequency domain, stimulation caused broadband power increases, as well as power bursts at the fundamental stimulation frequency and its super-harmonics. The spatial distribution of artifacts followed the potential distribution of an electric dipole with a median goodness-of-fit of R 2 = 0.80 across all subjects and stimulation channels. Artifacts as large as ±1,100 µV appeared anywhere from 4.43 to 38.34 mm from the stimulation channel. These temporal, spectral and spatial characteristics can be utilized to improve existing artifact suppression techniques, inspire new strategies for artifact mitigation, and aid in the development of novel cortical stimulation protocols. Taken together, these findings deepen our understanding of cortical electrostimulation and provide critical design specifications for future BD-BCI systems.

14.
Front Immunol ; 13: 939989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131932

RESUMO

The World Health Organization has defined long COVID-19 (LC) as a condition that occurs in individuals with a history of SARS-CoV-2 infection who exhibit persistent symptoms after its acute phase that last for at least two months and cannot be explained by an alternative diagnosis. Since we had previously reported residual viral antigens in tissues of convalescent patients, we aimed to assess the presence of such antigens in long COVID tissues. Here, we established the presence of the residual virus in the appendix, skin, and breast tissues of 2 patients who exhibited LC symptoms 163 and 426 days after symptom onset. With multiplex immunohistochemistry, we detected viral nucleocapsid protein in all three tissues. The nucleocapsid protein was further observed to colocalize with macrophage marker CD68, suggesting that immune cells were direct targets of SARS-CoV-2. Additionally, using RNAscope, the presence of viral RNA was also detected. Our positive finding in the breast tissue is corroborated by the recent reports of immunocompromised patients experiencing LC symptoms and persistent viral replication. Overall, our findings and emerging LC studies raise the possibility that the gastrointestinal tract may function as a reservoir for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antígenos Virais , COVID-19/complicações , Humanos , Proteínas do Nucleocapsídeo , RNA Viral , Síndrome de COVID-19 Pós-Aguda
15.
Front Immunol ; 13: 978760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172383

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected half a billion people, including vulnerable populations such as cancer patients. While increasing evidence supports the persistence of SARS-CoV-2 months after a negative nasopharyngeal swab test, the effects on long-term immune memory and cancer treatment are unclear. In this report, we examined post-COVID-19 tissue-localized immune responses in a hepatocellular carcinoma (HCC) patient and a colorectal cancer (CRC) patient. Using spatial whole-transcriptomic analysis, we demonstrated spatial profiles consistent with a lymphocyte-associated SARS-CoV-2 response (based on two public COVID-19 gene sets) in the tumors and adjacent normal tissues, despite intra-tumor heterogeneity. The use of RNAscope and multiplex immunohistochemistry revealed that the spatial localization of B cells was significantly associated with lymphocyte-associated SARS-CoV-2 responses within the spatial transcriptomic (ST) niches showing the highest levels of virus. Furthermore, single-cell RNA sequencing data obtained from previous (CRC) or new (HCC) ex vivo stimulation experiments showed that patient-specific SARS-CoV-2 memory B cells were the main contributors to this positive association. Finally, we evaluated the spatial associations between SARS-CoV-2-induced immunological effects and immunotherapy-related anti-tumor immune responses. Immuno-predictive scores (IMPRES) revealed consistent positive spatial correlations between T cells/cytotoxic lymphocytes and the predicted immune checkpoint blockade (ICB) response, particularly in the HCC tissues. However, the positive spatial correlation between B cells and IMPRES score was restricted to the high-virus ST niche. In addition, tumor immune dysfunction and exclusion (TIDE) analysis revealed marked T cell dysfunction and inflammation, alongside low T cell exclusion and M2 tumor-associated macrophage infiltration. Our results provide in situ evidence of SARS-CoV-2-generated persistent immunological memory, which could not only provide tissue protection against reinfection but may also modulate the tumor microenvironment, favoring ICB responsiveness. As the number of cancer patients with COVID-19 comorbidity continues to rise, improved understanding of the long-term immune response induced by SARS-CoV-2 and its impact on cancer treatment is much needed.


Assuntos
COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Comorbidade , Humanos , Inibidores de Checkpoint Imunológico , Memória Imunológica , Morbidade , SARS-CoV-2 , Transcriptoma , Microambiente Tumoral/genética
16.
Breast Cancer Res ; 24(1): 38, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659359

RESUMO

BACKGROUND: The effect of extracellular microenvironment (hypoxia and pH) has been regarded as a key hallmark in cancer progression. The study aims to investigate the effects of carbonic anhydrase IX (CAIX), a key hypoxia-inducible marker, in triple-negative breast cancer (TNBC) in correlation with clinicopathological parameters and predicting survival outcomes. METHODS: A total of 323 TNBC cases diagnosed at the Department of Anatomical Pathology, Singapore General Hospital from 2003 to 2013 were used. Immunohistochemical staining (IHC) was performed using CAIX antibody and digital mRNA quantification was performed using NanoString assays. CAIX membranous expression was correlated with clinicopathological parameters using Chi-squared test or Fisher's exact tests. Disease-free survival (DFS) and overall-survival (OS) were estimated using Kaplan-Meier analysis and compared between groups with the log-rank test. RESULTS: Forty percent of TNBCs were observed to express CAIX protein and demonstrated significant association with larger tumour size (P = 0.002), higher histological grade (P < 0.001), and significantly worse disease-free survival (DFS) and overall survival (OS) (after adjustment: HR = 2.99, 95% CI = 1.78-5.02, P < 0.001 and HR = 2.56, 95% CI = 1.41-4.65, P = 0.002, respectively). Gene ontology enrichment analysis revealed six significantly enriched cellular functions (secretion, cellular component disassembly, regulation of protein complex assembly, glycolytic process, cellular macromolecular complex assembly, positive regulation of cellular component biogenesis) associated with genes differentially expressed (CAIX, SETX, WAS, HK2, DDIT4, TUBA4α, ARL1). Three genes (WAS, SETX and DDIT4) were related to DNA repair, indicating that DNA stability may be influenced by hypoxia in TNBC. CONCLUSIONS: Our results demonstrate that CAIX appears to be a significant hypoxia-inducible molecular marker and increased CAIX protein levels are independently associated with poor survival in TNBC. Identification of CAIX-linked seven gene-signature and its relationship with enriched cellular functions further support the implication and influence of hypoxia-mediated CAIX expression in TNBC tumour microenvironment.


Assuntos
Neoplasias da Mama , Anidrases Carbônicas , Neoplasias de Mama Triplo Negativas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , DNA Helicases , Feminino , Humanos , Hipóxia/genética , Enzimas Multifuncionais , Prognóstico , RNA Helicases , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
19.
J Clin Pathol ; 75(5): 316-323, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33627375

RESUMO

AIM: Phyllodes tumours (PTs) categorised as benign, borderline and malignant, account for 1% of all breast tumours. Histological assessment does not always predict tumour behaviour, hindering determination of the clinical course and management.Epithelial-mesenchymal transition (EMT) is an important process during embryogenesis. Dysregulation of EMT causes loss of cell polarity, decreased intercellular adhesion, increased motility and invasiveness, promoting tumour progression. Similarly, cancer stem cells (CSCs) promote tumour growth, resistance and recurrence. The aim of this study is to evaluate expression of CSC markers; enhancer of zeste homolog 2 (EZH2), CD24 and CD44 and EMT associated proteins; ezrin (EZR) and high-mobility group AT-hook 2 (HMGA2) in PTs. METHOD: Uing tissue microarray sections, immunohistochemistry was performed on 360 PTs. Epithelial and stromal expressions of EZH2, EZR, HMGA2, CD24 and CD44 were evaluated to assess their impact on disease progression and behaviour in correlation with clinicopathological parameters. RESULTS: Stromal expression of EZH2, EZR and HMGA2 was observed in 73 (20.3%), 53 (14.7%) and 28 (7.8%) of tumours, epithelial expression in 121 (35.9%), 3 (0.8%) and 351 (97.5%) tumours, respectively. CD24 and CD44 staining was absent in both components. CONCLUSION: Expression of biomarkers correlated significantly with aggressive tumour traits such as stromal hypercellularity, atypia, mitoses and permeative tumour borders.Stromal expression of EZH2 and EZR shortened disease-free survival and overall survival; HMGA2 expression did not alter patient survival. EZH2 and EZR may thus be useful in predicting PT behaviour.


Assuntos
Neoplasias da Mama , Tumor Filoide , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Proteínas do Citoesqueleto , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico
20.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849574

RESUMO

Spatial transcriptomics has been emerging as a powerful technique for resolving gene expression profiles while retaining tissue spatial information. These spatially resolved transcriptomics make it feasible to examine the complex multicellular systems of different microenvironments. To answer scientific questions with spatial transcriptomics and expand our understanding of how cell types and states are regulated by microenvironment, the first step is to identify cell clusters by integrating the available spatial information. Here, we introduce SC-MEB, an empirical Bayes approach for spatial clustering analysis using a hidden Markov random field. We have also derived an efficient expectation-maximization algorithm based on an iterative conditional mode for SC-MEB. In contrast to BayesSpace, a recently developed method, SC-MEB is not only computationally efficient and scalable to large sample sizes but is also capable of choosing the smoothness parameter and the number of clusters. We performed comprehensive simulation studies to demonstrate the superiority of SC-MEB over some existing methods. We applied SC-MEB to analyze the spatial transcriptome of human dorsolateral prefrontal cortex tissues and mouse hypothalamic preoptic region. Our analysis results showed that SC-MEB can achieve a similar or better clustering performance to BayesSpace, which uses the true number of clusters and a fixed smoothness parameter. Moreover, SC-MEB is scalable to large 'sample sizes'. We then employed SC-MEB to analyze a colon dataset from a patient with colorectal cancer (CRC) and COVID-19, and further performed differential expression analysis to identify signature genes related to the clustering results. The heatmap of identified signature genes showed that the clusters identified using SC-MEB were more separable than those obtained with BayesSpace. Using pathway analysis, we identified three immune-related clusters, and in a further comparison, found the mean expression of COVID-19 signature genes was greater in immune than non-immune regions of colon tissue. SC-MEB provides a valuable computational tool for investigating the structural organizations of tissues from spatial transcriptomic data.


Assuntos
Algoritmos , COVID-19/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica , SARS-CoV-2/metabolismo , Animais , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Humanos , Hipotálamo/metabolismo , Cadeias de Markov , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...